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Background

Information Extraction

e Convert unstructured text into structured information

|E system
\ NER
RE structured
» » information
raw text
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Background

Joint Information Extraction

e Convert unstructured text into structured information

 Simultaneously extract semantically valid triples in the form of
(span, relation, span) from raw text

| |
"OpenAl, founded by Sam Altman, is located in San Francisco Bay."
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(OpenAI, founded by, Sam Altman)

(OpenAI, located in, San Francisco Bay)
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Existing methods
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Existing methods
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Challenges

Limitation

 #1, Static Span Formation
v'candidate spans are predefined and validated independently of relational context

v span embeddings are typically constructed by concatenating only boundary tokens,
ignoring intermediate tokens within multi-token spans
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Challenges

Limitation

* #2.Relation-Agnostic Semantic Processing

v"evaluate spans and span-pairs without explicitly incorporating relation-specific
contexts

v" prevents from leveraging effective semantic grounding from LLMs
= asLLMs cannot provide clear criteria for relation-agnostic validation

Konkuk university 8 Graph & Language Intelligence Lab.



Contributions

- Relation-faceted text-to-graph framework

v' explicitly integrates relation semantics and LLM-guided alignment to perform
dynamic, context-aware span validation

* Dynamic span composition with structural relations
v"introduces auxiliary structural relations
v' preserve fine-grained intra-span information

» Hierarchical Relation-faceted reasoning
v' performs token-level to span-level triple validation

v"guided by LLM-based preference alignment for semantic consistency and
robustness
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Proposed Method (RePool)

Problem Definition

 The primary goal is to identify and extract semantically valid triples,
simultaneously classifying entity types within valid entity spans
v"head and tail spans are contextually appropriate entities for the given relation

Y ={(h,rt)| ht € {span;;},r e {rel;}}

v" learn a scoring function that evaluates the likelihood of each candidate triple being
contextually appropriate and semantically meaningful

score(t) : 7 — [0,1]

Konkuk university 11 Graph & Language Intelligence Lab.



Proposed Method (RePool)

Overview
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Proposed Method (RePool)

Overview

* Consists of five main modules
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Proposed Method (RePool)

Overview

* Hierarchical validation across token and span levels
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Token-level Stage

Dual-view KG Construction

* Dual-view knowledge graph
v Node: token/ relation

(OpenAl, Founded by, Sam Altman) (OpenAl, located in, San Francisco Bay)
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Token-level Stage

Dual-view KG Construction

* Dual-view knowledge graph

v" Edge: auxiliary structural relations (subject of, object of, compound with)
= subject of/object of: links a token to a relation as a potential subject/object

= compound with: connects adjacent tokens that may belong to the same entity span,
which enables multi-token span formation

{OpenAl, Founded by, Sam Altman) (OpenAl, located in, San Francisco Bay)

( Founded by )
Ak ' i
/ | " subjeet o .

subject of  Object of objeet 'uf
G . N
! \

. - compound with - '
| OpenAL | [S;m}—i{hlt;nanj [LSan}.-—"L{Francism}—‘—bl E;ay

Dual-View Knowledge Graph

L1

"OpenAl, founded by Sam Altman, is located in San Francisco Bay.
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Token-level Stage

Dual-view KG Construction

 Token-Level Node Filtering

v" each token receives relevance score through
token specific scoring function:

score; (tok;) = H{W?tﬂk!]n

v' top-K selection strategy to retain the most relevant
tokens

Vi « TopK({tok; | score;(tok;)}, K).

v’ prunes noisy or irrelevant tokens

Konkuk university 17
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Token-level Stage

Relation-Faceted Graph Pooling

* Triple construction from the dual-view KG

(toki, relsub/obj/com’ relk)

* Use auxiliary structural relations
v" (OpenAI, subject_of, Founded by)
v" (Sam, compound_with, Altman)

(OpenAl, Founded by, Sam Altman) (OpenAl, located in, San Francisco Bay)

Founded by
T3 K.
I subject 0

. _— object of
'\. T View

woo compound with - .,
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(Oponnly | (Sam) o ltman)|  ((Sam) A Feamcisoo) A Bay)

Dual-View Knowledge Graph

"OpenAl, founded by Sam Altman, is located in San Francisco Bay."
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Token-level Stage

Relation-Faceted Graph Pooling

* Triple representation
v' segmentation token [HEAD], [REL], [TAIL]
v" [CLS] token summarizes the overall semantics of the triple
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Token-level Stage

Relation-Faceted Graph Pooling

* Triple filtering
v" assign validity score for each triple

score,(7) = J(Wgzr +bz),

v"apply top-k filtering to retain the most semantically valid triples
71 = TopK({r | score(7), 7 € 711}, K),
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Token-level Stage

Validity-Aware Aggregation

* Entity Node Update
v" by aggregating information from connected triples

Vv < v + Linear Z softmax(s;) * z¢
teN(v)

v weighted by their semantic validity scores
v aggregatesinformation from three structural triple types of 7q,p, 7opj) Teom
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Token-level Stage

Validity-Aware Aggregation

* Relation Node Update .
v directly updated |
v | ) ;
through a linear transformation ¢ i
e «— e+ Linear(e). | Linear | E
Cer ) (Cer )
Relation :
Relation Update |
Validity-Aware Aggregation

x
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Span-level Stage

Multi-Token Span Generation

+ Validated tokens are composed into multi-token spans
through compound_with relation 7.y,

» Ensure each oneis contiguous and semantically
meaningful

Vs = {Spﬂni:j [{(tok;, relcom, tokis1), (tokis1, releom, tokiy2),

‘e uy (tﬂkj_], rﬁfcﬂm, tﬂkj)}’ (_: ?’i‘L, I < _j}. Multi-Token Span

Generation
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"OpenAl, founded by Sam Altman, is located in San Francisco Bay."
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Span-level Stage

Multi-Token Span Generation

+ Validated tokens are composed into multi-token spans
through compound_with relation 7.y,

» Ensure each oneis contiguous and semantically
meaningful

Vs = {Spﬂni:j [{(tok;, relcom, tokis1), (tokis1, releom, tokiy2),

[ Node Filtering ]]

cees (tﬂkj—lr relcom, tﬂkj)} C 9L, i < j} LB T
Generation

» Each spanis represented by pooling its token
embeddings

span,; ; = Pool({tok;, tok;,1, ..., tok;})
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Span-level Stage

Span-level semantic validation

* Relation-Faceted Graph Pooling
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LLM-guided Alignment

* Model-driven validation may lack deep semantic awareness
v model can assign unreasonably low scores to valid triples,
v" filtering them out and creating a kind of negative feedback loop during training
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LLM-guided Alignment

* Query LLM to compare candidate triple sets and
decide which one better matches the input text
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LLM-guided Alignment

(OpenAI, Founded by, Sam Altman) pde

(OpenAI, Founded by, San Francisco) g
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LLM-guided Alignment

* Query LLM to compare candidate triple sets and
decide which one better matches the input text

 Apply Bayesian Personalized Ranking(BPR) loss

v'encourages to prioritize triples that LLM judges as
more semantically consistent with the input text

Lalign = —log o(cos(text, zg+) — cos(text, zq-))

Konkuk university 29
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Prediction & Training

* Prediction
v" rank all candidate triples based on validity scores
v" top-ranked triples are selected as final outputs

[ IE Prediction ]

Te « T3

Konkuk university 30 Graph & Language Intelligence Lab.



Prediction & Training

[ IE Prediction ]

Te « T3

* Training Objective

v"each corresponds to prefiltering, LLM-guided alignment,
and prediction

Liotal = Lpreﬁlter + Lalign + Lprediction

= Lpreriicer - filter out noisy or irrelevant tokens and spans
= Lyign - transfer LLM's semantic preferences through
pairwise supervision

*  Lprediction - Optimize triple-level accuracy for entity and
relation extraction
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Experiments

Datasets

 CoNLLO4
: Newswire sentences with general entity&relation types

* SciERC

: Scientific abstracts from Al conferences, with scientific entities & relations
 ACEO5

: Diverse domains (news, forums, broadcast) with annotated entities & relations

Dataset |

|  #Train #Dev # Test

SciERC
ACEO05

1,861 275 551
10,051 2,424 2,050

Table 1: The statistics of datasets.

& R

CoNLL04 4 5 922 231 288
6 7
7 6
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Experiments

Evaluation Metrics

 ENT
: correct if span boundaries and entity type match gold
* RE
: correct if relation type and head/tail entity spans match gold

 RE+
: correct if relation type, head/tail entity spans and entity types all correct
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Experiments

Overall Performance Comparison

» Evaluate on Joint IE task
» RePool consistently outperforms baselines on CoNLLO4, SCiERC, and ACEQ5
 Achieves higher F1 scores for ENT, RE, and RE+

Models | CoNLL04 SciERC ACE05

ENT RE RE+ ENT RE RE+ ENT RE RE+
SpERT [8] 89.25 71.33 71.09 55.26 37.72 36.59 - - -
UTC-IE [40] 89.04 65.13 64.53 64.45 40.73 33.73 84.91 63.83 62.57
UniRE [38] - - - 67.36 - 37.23 89.19 - 62.66
PEN [42] 88.79 - 71.32 67.82 - 37.57 89.59 - 67.21
DYGIE++ [36] - - - 67.79 47.37 - 83.52 60.47 -
GraphER [48] 89.07 64.15 63.18 62.06 37.81 35.06 80.48 63.93 61.53
ATG [47] 89.63 70.53 70.53 63.79 40.83 30.89 81.41 64.96 61.79
HGERE [41] - - - 66.61 44.20 30.51 83.72 64.07 60.83
RePool (our model) | 90.17 72.35 72.15 | 68.03 47.51 38.02 | 89.91 68.83 67.79

Table 2: Overall performance comparison of joint IE methods, reported in ENT, RE and RE+ F1 scores. Best scores are highlighted
in bold and second-best scores are underlined. All experiments are based on results from their GitHub repo or our reproduction,
and were reproducibly conducted on the datasets used in the original work, following the original experimental settings.
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Experiments

Overall Performance Comparison

* Relation-faceted modeling contributes to extracting more coherent and
semantically meaningful triples
v" provide stronger benefits for relation extraction than for entity extraction

Models | CoNLL04 SeiERC ACE05

| ENT RE RE+ ENT RE RE+ ENT RE RE+
SPERT [8] 89.25 7133 7109 55.26 3772 3659 - - -
UTC-IE [40] 89.04 6513 6453 6445 4073 3373 8491 6383 6257
UniRE [38] - - - 67.36 - 37.23 89.19 - 62.66
PFN [42] 88.79 - 7132 | 67.82 - 3757 | 8959 - 67.21
DYGIE++ [36] - - - 6779 4737 - 8352 6047 -
GraphER [48] 89.07 6415 6318 6206 3781 3506 8048 6393 6153
ATG [47] 89.63 7053 70.53 6379 4083 3089 | 8141 6496 6179
HGERE [41] - - - 6661 4420 3051 8372 6407  60.83
RePooL (our model) 90.17 72.35 72.15 68.03 47.51 38.02 89.91 68.83 67.79

Table 2: Overall performance comparison of joint IE methods, reported in ENT, RE and RE+ F1 scores. Best scores are highlighted
in bold and second-best scores are underlined. All experiments are based on results from their GitHub repo or our reproduction,
and were reproducibly conducted on the datasets used in the original work, following the original experimental settings.
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Experiments

Overall Performance Comparison

* Relation-faceted modeling contributes to extracting more coherent and
semantically meaningful triples

v" larger gains on datasets with clear and distinct relation types
-> indicates that explicit relation modeling is especially effective when relations are distinct

Models | CoNLL04 SeiERC ACE05

| ENT RE RE+ ENT RE RE+ ENT RE RE+
SPERT [8] 89.25 7133 7109 55.26 3772 3659 - - -
UTC-IE [40] 89.04 6513 6453 6445 4073 3373 8491 6383 6257
UniRE [38] - - - 67.36 - 37.23 89.19 - 62.66
PFN [42] 88.79 - 7132 | 67.82 - 3757 | 8959 - 67.21
DYGIE++ [36] - - - 6779 4737 - 8352 6047 -
GraphER [48] 89.07 6415 6318 6206 3781 3506 8048 6393 6153
ATG [47] 89.63 7053 70.53 6379 4083 3089 | 8141 6496 6179
HGERE [41] - - - 6661 4420 3051 8372 6407  60.83
RePooL (our model) 90.17 72.35 72.15 68.03 47.51 38.02 89.91 68.83 67.79

Table 2: Overall performance comparison of joint IE methods, reported in ENT, RE and RE+ F1 scores. Best scores are highlighted
in bold and second-best scores are underlined. All experiments are based on results from their GitHub repo or our reproduction,
and were reproducibly conducted on the datasets used in the original work, following the original experimental settings.
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Conclusions

 Key Contributions

v" proposed RePooL: Relation-Faceted Graph Pooling with LLM-guided Semantic
Alignment

v"improves joint IE through explicit relation modeling and LLM-based semantic
supervision

e Results

v' outperforms competitive baselines on multiple benchmarks

* Future work
v extend to open-world or few-shot IE
v'explore LLM-based knowledge distillation
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RePooL: Relation-Faceted Graph Pooling
with LLM Guidance for Dynamic Span-Aware Information Extraction

Thank you for your attention!
Any questions?

Hye-Yoon Baek (hannah100@konkuk.ac.kr / hyeyoonbaek@gmail.com )

Konkuk University, Seoul, Republic of Korea
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